Approximating Functions

Consider the geometric series (a=1, r=x)
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But, written the other way round, this is a polynomial
expansion of a function;

Power Series - Maclaurin
In general a function may be expanded in a
power series defined as;

X)=c,+ex+e,x’+ex . +ex" +...
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Here, all of the polynomial terms are centred
on x=0, it is and expansion about the point
x=0 or a Maclaurin Series.
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» We’ll see why this is the expansion later

* More terms — the power series becomes
more accurate for a wider range of values of x

Why bother ?

* Approximating an analytic function by its
series expansion often helps us to visualise
and understand its behaviour — eg: <E>(T) in
the problem class.

* Series can be used to represent experimental
data when you don’t know the analytic form
(eg: curve fitting, drawing a straight line...).

Finding the coefficients: Maclaurin
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€2 . The coefficients are the derivatives
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The Maclaurin Series - Summary Maclaurin for cos(x)
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Knowledge of all of the derivatives at one
point completely determines any well behaved 1
function (eventually) cos(x) = o X2+ u x* o X6+

It works well for small x — how many terms
would we need to approximate a whole cycle
of cos(x) ?

Power Series - Taylor

It may be convenient to expand about some
other point, eg: x=a, then the power series is;

f(xX)=c,+c,(x—a)+c,(x—a)’ +c;(x—a)’ +...

Expansion about the point x=a is a Taylor
Series.




Taylor Series

The analysis is very similar to the Maclaurin
series leading to;
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OK but if we want to approximate cos(x) at
x=n we will need a lot of terms — better to
expand about x= 7 using a Taylor expansion.

cos(x) : Taylor Series

cos(r)=-1
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So ...
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Now an excellent approximation at x=n with a
few terms.

Summary

» Knowledge of the derivatives of a function can be
used to make a polynomial expansion which, if you
use enough terms, reproduces the function exactly

* A Maclaurin series achieves this by expansion
about x=0

* Faster convergence can be achieved away from
x=0 by using a Taylor series which expands about
any point, eg: x=a.

Potential Energy of a Diatomic Molecule

In H, the potential energy of interaction of the
atoms looks like this
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The Morse Potential

To a good approximation the potential energy
is give by the Morse form which is;

E(r)=D,{—ef

with, De=4.79¢V, a = 0.074 nm and 0=19.3 nm!.

Problem Class 2

Compute an Harmonic approximation to the
Morse potential for H, and thus compute the
vibrations of the molecule.
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